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Boolean Networks (BN)
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Rules: F (x1, x2, x3) = (x2 ∧ ¬x3, x3,¬x1 ∧ x2)

(a) The wiring diagram encodes the dependency between
variables.

(b) The state transition graph or state space. This graph
encodes all possible trajectories.
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Control Targets on Boolean Networks

We consider two types of control actions:

1 Deletion or constant expression of edges
2 Deletion or constant expression of nodes.

x1

x2 x3

Identification of control targets in Boolean molecular network models via computational algebra.
David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher.
BMC Systems Biology, 10:94, 2016.
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Edge Deletion

Network Controlled System

x1

x2 x3

F2(x,u3,2) = f2(x1, x2, (u3,2 + 1)x3)

For u3,2 = 0, F2(x, 0) = f2(x1, x2, x3).
The control is not active.

For u3,2 = 1, F2(x, 1) = f2(x1, x2, 0).
The control is active and the action represents the deletion of the
edge x3 → x2.

Identification of control targets in Boolean molecular network models via computational algebra.
David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher.
BMC Systems Biology, 10:94, 2016.
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Node Deletion

Network Regulatory rule

x1

x2 x3

Fj(x,u−
i ,u+

i ) := (u−
i + u+

i + 1)fj(x) + u+
i

For u−
i = 0, u+

i = 0, Fj (x, 0, 0) = fj (x). The control is not active.

For u−
i = 1, u+

i = 0, Fj (x, 1, 0) = 0. This action represents the
knock out of the node xj .

For u−
i = 0, u+

i = 1, Fj (x, 0, 1) = 1. This action represents the
constant expression of the node xj .

For u−
i = 1, u+

i = 1, Fj (x, 1, 1) = fj (xt1
, . . . , xtm ) + 1.

Identification of control targets in Boolean molecular network models via computational algebra.
David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher.
BMC Systems Biology, 10:94, 2016.
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Identifying control targets

Let F = (f1, . . . , fn) : Fn → Fn where F = {0,1}.

Suppose that y0 = (y01, . . . , y0n) ∈ Fn is a desirable cell state (for
instance, it could represent the state of cell senescence).
It might be the case that y0 is not a fixed point, i.e., F(y0) ̸= y0.

Goal: stabilizing or Generating new steady states

Find a set of controllers µ = {µ1, . . . , µn} so that F(y0, µ) = y0.

To solve this problem we consider the system of polynomial equations
in the u parameters:

Fj(y0,u)− y0j = 0, j = 1, . . . ,m. (1)

Identification of control targets in Boolean molecular network models via computational algebra.
David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher.
BMC Systems Biology, 10:94, 2016.
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Identifying control targets

Given F = (f1, . . . , fn) : Fn → Fn with F(x0) = x0, for x0 ∈ Fn.

Suppose that x0 is an undesirable attractor (it could represent a tumor
proliferative cell state that needs to be avoided).

Goal: blocking transitions or removing fixed points
Find a set of control edges such that F(x0, µ) ̸= x0.

To solve this problem consider the following equation,

(2)[F1(x,uj,1)− x01 + 1] · · · [Fn(x,uj,n)− x0m + 1] = 0

In general, for blocking a transition, consider

(3)[F1(x,uj,1)− z01 + 1] · · · [Fn(x,uj,n)− z0n + 1] = 0
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Blocking transitions or removing fixed points

Let F = (f1, . . . , fn) : Fn → Fn where F = {0,1}.

Suppose a particular value of a variable, xk = a ∈ F2, triggers an
undesirable pathway, or is the signature of an abnormal cell, then we
want all steady states of the system to satisfy xk ̸= a.

Goal: blocking regions in the state space
In this case, we consider the systems of equations

Fj(x ,u)− xj = 0, j = 1, . . . ,m,

xk − a = 0.
(4)

Since the steady states with xk = a are to be avoided, we want to find
controls u for which Equation 4 has no solution.

Identification of control targets in Boolean molecular network models via computational algebra.
David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Laubenbacher.
BMC Systems Biology, 10:94, 2016.
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Modules

a b
𝑥!

𝑥" 𝑥#

𝑥$ Module 1

Module 2

Rules: F (x) = (x2 ∧x1,¬x1, x1 ∨¬x4, (x1 ∧¬x2)∨ (x3 ∧x4))

(a) Wiring diagram of a Boolean network where the non-trivial
modules are highlighted by amber and green boxes.

(b) Directed acyclic graph describing the corresponding
connections between the nontrivial modules.
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Restriction of a BN to a subsets of its variables

Consider the Boolean network
F (x) = (x2 ∧ x1,¬x1, x1 ∨ ¬x4, (x1 ∧ ¬x2) ∨ (x3 ∧ x4))

with wiring diagram in the left.

The first module (indicated by the
amber box) is the restriction of F to
S1 = {x1, x2} which is the
2-variable network
F |S1(x1, x2) = (x2 ∧ x1,¬x1).

The second module (indicated by the green module) is the restriction
of F to S2 = {x3, x4} which is the 2-variable network with external
parameters e1 and e2 F |S2(x3, x4) = (e1 ∨ ¬x4, (e1 ∧ ¬e2) ∨ (x3 ∧ x4))).
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Modules

Given a F with wiring diagram W . Let W1, . . . ,Wm be the SCCs of W
with pairwise disjoint sets of variables Si . The modules of F are then
the restrictions to these sets of variables, F |Si . Further, the modular
structure of F can be described by a directed acyclic graph
Q = {(i , j) | Wi −→ Wj} by setting Wi −→ Wj whenever there exists a
node from Wi to Wj .

a b
𝑥!

𝑥" 𝑥#

𝑥$ Module 1

Module 2
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Control via modularity
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The network is decomposed into its constituent modules: F1, . . . , Fn . Then, controls are identified for each module: µ1, . . . ,
µn . Combining the controls of the modules µ = (µ1, . . . , µn) we obtain a control for the entire network.

Modular control of Boolean network models. David Murrugarra, Alan Veliz-Cuba, Elena Dimitrova, Claus Kadelka, Matthew
Wheeler, Reinhard Laubenbacher. Under review, 2025. https://arxiv.org/abs/2401.12477.
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Larger models
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Pancreatic Cancer Cell Pancreatic Stellate Cell

The colors of nodes indicate the cell type. Black arrows indicate signal activation, while red arrows indicate suppression.

Modeling the Pancreatic Cancer Microenvironment in Search of Control Targets. Daniel Plaugher and David Murrugarra.
Bulletin of Mathematical Biology, 83, (11):115, 2021.
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Modules in larger models
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(a) Wiring diagram of a Boolean multicellular pancreatic cancer model, which describes the interactions of pancreatic cancer cells
(purple nodes), pancreatic stellate cells (blue nodes), and their connecting cytokines (yellow nodes). The non-trivial modules are
highlighted by amber, green, and gray boxes. (b) Directed acyclic graph describing the connections between the non-trivial
modules.
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Aggression Scores

Uncontrolled Attractor Aggression Scores
Weight N.I. KRAS TP53 CycD SMAD T-K C-K S-K T-C T-S C-S T-C-K T-S-K C-S-K T-C-S T-C-S-K
Same 2.00 2.00 3.09 2.00 2.00 3.16 2.00 2.00 2.00 4.00 2.00 2.00 4.00 2.00 2.00 2.00

High/Low 5.78 5.71 15.44 9.99 2.00 15.78 10.00 2.00 10.00 19.98 10.00 10.00 20.00 10.00 10.00 10.00
Low/High 6.22 6.29 11.79 2.00 10.00 12.40 2.00 10.00 2.00 19.98 2.00 2.00 20.00 2.00 2.00 2.00
Average 4.67 4.67 10.11 4.66 4.67 10.45 4.67 4.67 4.67 14.65 4.67 4.67 14.67 4.67 4.67 4.67

Uncontrolled Trajectory Aggression Scores
Weight N.I. KRAS TP53 CycD SMAD T-K C-K S-K T-C T-S C-S T-C-K T-S-K C-S-K T-C-S T-C-S-K
Same 1.09 1.12 3.03 1.56 1.14 3.05 1.56 0.71 1.92 3.72 1.55 1.95 3.81 1.58 1.92 1.93

High/Low 5.16 5.37 10.74 8.11 5.36 10.84 8.18 3.56 9.54 11.36 8.09 9.71 11.55 8.14 9.61 9.62
Low/High 2.79 2.80 7.51 1.70 2.82 7.49 1.67 2.63 2.06 11.08 1.65 2.07 11.36 1.72 2.00 2.05
Average 3.01 3.10 7.09 3.79 3.11 7.12 3.80 2.30 4.51 8.72 3.76 4.58 8.91 3.81 4.51 4.53

Control Set 1 Trajectory Aggression Scores
Weight N.I. KRAS TP53 CycD SMAD T-K C-K S-K T-C T-S C-S T-C-K T-S-K C-S-K T-C-S T-C-S-K
Same -0.896 -0.848 -0.913 -0.894 -0.891 -0.89 -0.893 -0.863 -0.9 -0.882 -0.905 -0.885 -0.883 -0.915 -0.911 -0.887

High/Low -0.768 -0.624 -0.817 -0.726 -0.779 -0.738 -0.725 -0.687 -0.74 -0.754 -0.753 -0.701 -0.771 -0.771 -0.751 -0.711
Low/High -0.696 -0.616 -0.745 -0.766 -0.675 -0.722 -0.773 -0.639 -0.78 -0.674 -0.761 -0.733 -0.603 -0.819 -0.815 -0.735
Average -0.78667 -0.696 -0.825 -0.79533 -0.78167 -0.78333 -0.797 -0.72967 -0.80667 -0.77 -0.80633 -0.773 -0.75233 -0.835 -0.82567 -0.777667

Control Set 2 Trajectory Aggression Scores
Weight N.I. KRAS TP53 CycD SMAD T-K C-K S-K T-C T-S C-S T-C-K T-S-K C-S-K T-C-S T-C-S-K
Same -0.91 -0.856 -0.445 -0.872 -0.876 -0.399 -0.892 -0.856 -0.463 -0.409 -0.873 -0.427 -0.428 -0.843 -0.406 -0.427

High/Low -0.846 -0.704 -0.317 -0.72 -0.756 -0.247 -0.844 -0.744 -0.359 -0.257 -0.737 -0.323 -0.308 -0.635 -0.246 -0.347
Low/High -0.83 -0.696 -0.341 -0.744 -0.772 -0.207 -0.772 -0.688 -0.351 -0.209 -0.769 -0.339 -0.276 -0.723 -0.23 -0.315
Average -0.862 -0.752 -0.36767 -0.77867 -0.80133 -0.28433 -0.836 -0.76267 -0.391 -0.29167 -0.793 -0.363 -0.33733 -0.73367 -0.294 -0.363

Uncovering potential interventions for pancreatic cancer patients via mathematical modeling. Daniel Plaugher, Boris Aguilar,
David Murrugarra. Journal of Theoretical Biology, 548, 111197, 2022.
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Aggression Scores: validation

Survival Estimates. This graph shows the Kaplan-Meier survival plots for the key mutation combinations used previously. The
time-to-death variable is recorded in days, and each curve represents the probability of survival for patients in each cohort.

Uncovering potential interventions for pancreatic cancer patients via mathematical modeling. Daniel Plaugher, Boris Aguilar,
David Murrugarra. Journal of Theoretical Biology, 548, 111197, 2022.
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Summary

Decomposing the network into modules can make the control
problem more tractable.

An advantage of using the decomposition theory for Boolean
networks is that it guarantees a unique collection of subnetworks.
This allows us to restrict the control problem to each module, and
then combine the controls of each module to control the entire
network.
It turns out that we don’t need to control every module of the
network to achieve a control objective.
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